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Framework IREC?

 HYBRIS WP3 Task 3.3: Optimal electrical architecture of each BESS
and the HESS (M9-M17)

This task aims at achieving the optimal electrical and conversion
architecture for hybrid electric storage systems (HESS).

An optimization problem is defined with a search space consisting of
commercial passive and active electrical and electronic components.

The final target is to define an architecture for the HESS that would
ensure the following:

d Scalable and modular power system for different ESS integration.
d Optimized trade-off among efficiency, cost, and reliability.

Work performed by IREC with the collaboration of CEA and the support
from TOS and KEMI.
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Hybrid Electric Storage  IREC?
System

General scheme of the HESS
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Explored power system IREC?
architectures

1 Four conversion architectures are explored, with different
degrees of parallelization.

Architecture A Architecture B

Parallelization
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Power converter IREC?
topologies

1 DC-DC modules: Dual-active-bridge converter (DAB)
employing conventional phase shift modulation.
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) DC-AC modules: Three-phase inverter employing SPWM.
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Multiobjective IREC?
Optimization Problem

For each architecture (x € {A, B, C, D}) a multiobjective optimization problem is
defined.

Objective function:
Gx,w(y) — W(W ) CCW(Y) + Waw ) Uy’c,w(y)

d Cc,w‘ Conversion losses (in p.u.).

J O';C,W: System capital and reliability cost (in p.u.).
To explore the cost-losses trade-off, weights /7, and 11/, are used. Three different
weight sets (WS) are defined:

O  WSL: {W;y, W1} = {0.5,0.5}. Losses priority = Cost priority.
Q  WS2: {W;,, W,,} = {0.2 0.8}. Losses priority > Cost priority.
O WS3: {W;3, Wy3} = {0.8 0.2}. Losses priority < Cost priority.
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{ - Conversion Losses IREC?
Objective

To compute the system losses we employ multiple converter
component losses models.

J Semiconductor conduction losses and switching losses.

d Modelled with linear equations from the devices datasheet data,
taking into account junction temperature.
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{ - Conversion Losses IREC?
Objective

O Magnetic elements: DAB inductor + transformer and inverter filter inductors.

d Copper losses: dc resistance and ac resistance (skin + proximity effect) in the winding
conductors. From simplified Maxwell’s equations [1].

i-MLT
Pgc=p 'n:;,j—.AwZﬁf If | Pacj=1I%j Ryc; @ M- [Gl(%) + %(sz - 1) (Gl(%) — 26, (‘Pj))]

d Core losses: Polynomial regressions from core material datasheets.

Pre =KFe0'f1€'ABB'NC'AC'lm

d Capacitor losses: derived from ESR: Pcap = ESR - IZ (ESR values obtained from the datasheets)
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I h e r m a I m Od e I Shaping Energy for a Sustainable Future

O We compute the component temperatures since:

0 Semiconductor losses = f(T)).

d Limit component temperatures to the maximum specified by the manufacturer.

0 Heat-dissipation thermal models:

Q Semiconductors: Power MOSFETs + body diode attached to heatsink (forced air cooling). Junction
temperature (7)) is computed.

Q Magnetics: Natural convection cooling. Uniform temperature is considered (7,,,,onetic )-
Q Capacitors: Free-standing capacitor with forced air cooling. Capacitor core temperature is
computed (7., 4)-

= Semiconductors junction temperature

junction 7},1 T},N ij = TC + Rth,j—C,n . (Pcond,n + PSW,n)
case .
RthJ_CJé Ry.y ™ Magnetic elements temeprature
heatsink 0.833
T Pcorex + Pcopper k
‘ T'magnetic,k = Tamb t 10 - S .
Ry ha magnetic,k
T,

= Capacitor core temperature
Tcap = Tambk + (Rth,cap,O"'Rth,cap,l(uwind))'Pcap
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o - Converter Cost IREC?
Objective

The system cost is divided in two parts:
 Capital cost: Sum of the components acquisition cost. Obtained from cost models [2], [3], [4].

L Semiconductor cost = f{Chip area + Package)

Magnetics cost = f{Core weight + Copper weight + Labor cost)
Capacitors cost = f{Voltage rating + Capacitance rating)
Heatsink cost = f{HS volume + fixed cost)

Fan cost = f{[Fan volume + fixed cost)

U000 O0

Auxiliary elements cost = f(#Gate drivers + #sensors)

Magnetic core cost [€/kg]

Semiconductor chip area cost [€/mm?]

Core Powder | Amorpho
Voltage o Semiconductor package cost [€] material Core s
be 2473 variable

SC type
10- . = Winding cost [€/k
WM 4.46-10>2 72-102 Value 0.55 810 052Amod g [€/kg]

or type

100V - 13.24-102 -
Value 10 10.2 20

[2] R. Burkart and J. W. Kolar, “Component cost models for multi-objective optimizations of switched-mode power converters,” in 2013 IEEE Energy Conversion Congress
and Exposition, Sep. 2013, pp. 2139-2146.

[3] R. M. Burkart and J. W. Kolar, “Comparative n-p-c Pareto Optimization of Si and SiC Multi-Level Dual Active Bridge Topologies with Wide Input Voltage Range,” IEEE H2020
Trans. Power Electron., pp. 1-1, 2016. G.A. 963652
[4] R. M. Burkart and J. W. Kolar, “Comparative Life Cycle Cost Analysis of Si and SiC PV Converter Systems Based on Advanced n- p-o Multiobjective Optimization
Techniques,” IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4344-4358, Jun. 2017.




o = Converter Cost IREC?
Objective

O Reliability cost = Cost of reparation + Energy revenue lost

L Reparation of failed power modules = f{ Probability of modules failure + Reparation cost)

U Revenue lost from partial/complete shutdown = f{ Probability of modules failure + Power lost +
Price of energy)

Q Computed for a 1-year period (demo-site testing period).

L Reliability model:

U Based on Markov chains.
O Allows computing the probability of failure of a power module.
U Failure rate of the modules = f{Component temperatures & blocking voltages)
O Architectures A & B can continue operation if one dc-dc module per group fails = Partial shutdown.
O Architectures C & D must stop operation if any power module fails 2 Complete shutdown.
Architecture A Architecture B Architecture C Architecture D
AB1— Group 1 lC.l Ac31 Ap1
: - +dc dc __dc A3
Ag3s dc ac dc &
do 1. de de de e
ac —] -
dc ac dc
Ac2 Ac32 Ap2 H2020
G.A. 963652
Group 2 32, Group 2 11

ENNERCOC ivpuina seoisigosijescinid



Optimization variables

Npar,sw,DAB,bat,b
npar,sw,DAB,grid,b
npar,sw,inv,b
tyPesw,DAB,bat,LTO
modelsy paB batb

mOdelsw,DAB,grid,b
mOdelsw,inv,b

Vdc

fspaBb
mf,b
modelys pag bat,b
modelyspaggrid,b

mode lHS,inV,b

HYBRIS
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Lys,paB bat,b
LyspaB grid,b
LHS,inV,b
Npar,cap,dclink,b
Npar,cap,bat,b
mOdelcap,bat,b
mOdelcap,dclink,b
Ncore,L,DAB,b
ncore,Tx,DAB,b
ncore,L,inV,b
mOdelcore,L,DAB,b

mOdelcore,Tx,DAB,b

mOdelcore,L,inv,b

b € {LTO, AORF}

tYPewire,L,DAB,b
ty p ewire,Tx,DAB,b
ty P€wire,L,inv,b
modelyire 1,DAB,b
modelyire Tx,DAB,b
mo delwire,L,inv,b
Ny 1, DAB,b
Nt Tx,DAB,bat,b
nL,iI‘lV,b
NPpWL, DAB,b
NPWTx DAB,bat,b
NPpWrx DAB,grid,b

NPpwy, inv,b

IREC"Y
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O 76 optimization
variables

d All variables are
discrete
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Design Space IREC?

Shaping Energy for a Sustainable Future
Opt. variable Design space

Nparsw,DABbath [l

Upto2
Upto2
Discrete Si MOSFET, Discrete SiC MOSFET

LTO battery: 4
- Si MOSFET: IRF100P218, IRF100P219, IPPO23N10NS5,

IPPO30ON10NS5, STF150N10F7, IPB120N10S4-03,
SUP70090E, IPD122N10N3G, IPP126N10N3G

- SiC MOSFET: UF3SC065007K4S

AOREF battery:

- Si MOSFET: SiHGO18N60E, SiIHGO26N60EF,
IPZ60R017C7, IPW60R017C7, IPW60R018CFD7,
IPW60R024CFD7, IPW60R024P7, IPZA60R024P7,
IPW60R041P6, IPW60R0O60P7

el BN sty SIC MOSFET modules: CABO0O6M12GM3, CABOO8M12GM3

SiC MOSFET modules: CABOO6M12GM3, CABOO8M12GM3,
mOdelsw,inv,b

CCB032M12FM3
dc 700V, 750V, 800 V
fsDABb 20 kHz, 24 kHz, ..., 92 kHz, 96 kHz, 100 kHz
ms p 201, 219, 237, ..., 687, 705, 723
(Lol SN | From Advanced Thermal Solutions extrusion heat sinks
catalogue:

WDV - ATSEXLE, ATS-EXLSO, ATS-EXL64, ATS-EXL6S, ATS-

modelys iny EXL67, ATS-EXL75
HYBK'S
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Design Space IREC?

Shaping Energy for a Sustainable Future
Opt. Variable Design space

From Cornell Dubilier Electronics film capacitors:
947D 152KQ0TDLRSN, 947C102K901DCHS,

LIRSS | 947D112K102DLRSN, 947C641K102DBHS, 947C321K122DAHS,
944U101K122AC, 944U660K102AA

Ncore,LDAB,b 1to 5

Ncore, Tx,DAB,b 1to 5
Ncore,L,inv,b 1fo 5
From Magnetics cores catalogue:

UL OPICIRS 007716947, 0077 101A7, 0077336A7, 0059188A2, 0059909A2
From Magnetics cores catalogue:

modelcoreTxpaBy RULSREIRIUYS 0077164A7, 0077 169A7, 0077101A7,

0077614A7,0077336A7,0077869A7,0077740A7, 0077778A7
From Magnetics and TDK Electronics cores catalogue:

modelcore Linv.b E32/16/11 (Ferrite), 00K31120090, OOKT1T14LEQ14, 0077 164A7,
0077169A7,0077101A7,0077614A7, 0077336A7, 0077869A7
tyPewire LDAB,b Round, Foil, Litz

tYDewire,Tx,DAB,b Round, Foil, Litz

typewire,Linv,b Round, Foil, Litz
WSV - Round wires: 2 AWG to 30 AWG
modelyireTxDABL e Litz wires: from 20.04mm strand and 45 conductors per
model yire L inv b litz, to 20.28mm strand and 1350 conductors per litz
Nt LDAB,b Up to 25 turns Litz stranded
Nt Tx,DAB,bat,b Up to 18 turns

H2020
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Constraints IREC?

Shaping Energy for a Sustainable Future

d Semiconductors max. temperature < 120 eC
1 Magnetics max. temperature < 100 eC

1 Magnetics max. flux density < B.,, value from datasheet.

sat
L Grid current THD <10 %
M dc-link voltage ripple < 10 %

U ...other constraints related to the converters modulation.

THD 6.60%

Grnid Current (A) .
e

T TR L TR S, O . SN, A |
888588833

0 0.02 0.04
Time (s)
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Optimization Problem  IREC?
Solving

m}jn Gx,w (Y) — WZW ) Z;(w (Y) + Wow G;(,W (Y)

subject to constraints:

y; € Z, i=1,..,76 . Best 39812 Incumbent: 3.9812 Current: 18.9594
lpi S Vi < up lp,i» Up,; € Z. N Tﬁtm
' ' ' ’ ar . i Random Samples
. .»EdaptheSa‘rqias
= “
Solved with MIATLAB Surrogate 2 |
optimization algorithm. g 4
(]
!
Executed 6x times per architecture (x4) 2l
and weight set (x3) = 76 Executions. 11

20 30 40 50 60 70 BO 80 100
NMumber of Function Evaluations
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Losses [p.u.]
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Optimization results

Architecture A

Architecture B

IREC"Y
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--------
----------

Best results (WS1)
Best results (WS2)
Best results (WS3)
Pareto front (WS1)
Pareto front (WS2)
Pareto front (\WS3)
Opt. results (VWS1)
Opt. results (WS2)
Opt. results (WS3)

......
......

4
d

 Architecture D stands as the'optimum architecture

Clear cost-losses trade-off.
Lesser parallalization = Better results

.............

Best results (WS1)
Best results (WS2)
Best results (WS3)
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Optimization results IREC?

) WS1 Arch. D design is selected for its competitive cost-losses trade-off.
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Conclusion IREC?

Shaping Energy for a Sus

We have developed an Electronic Design Automation tool with
comprehensive and multiphysics modelling to:

J Obtain a set of power converter designs with optimum
performance offering a wide range of cost-losses trade-off.

1 The converter design are defined to the component level -
Ready-to-go for converter implementation.

In HYBRIS context: Architectures with lower degree of
parallelization offer the performance:

d However, if reliability cost is accounted for a longer period, these
Architectures may not become cost competitive.
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of the

66%

L]

UMLIITULIL solutions

Architecture A

N Failure reparation [ Fans
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Architecture B Architecture C Architecture D
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