

## Optimization of the HESS power conversion architecture

Workshop on energy storage and its crucial role in the energy transition with focus on hybrid solutions

Presented by Àlber Filbà – PostDoc Researcher at IREC with collaboration from Oriol Esquius Project Engineer at IREC





□ 1st HYBRIS Workshop



his project has received funding rom the H2020 programme under Grant Agreement No. 963652

□ Horcynus Orca Foundation, 23rd June 2022





H2020 G.A. 96365

2

HYBRIS WP3 Task 3.3: Optimal electrical architecture of each BESS and the HESS (M9-M17)

This task aims at achieving the optimal electrical and conversion architecture for hybrid electric storage systems (HESS).

An optimization problem is defined with a search space consisting of commercial passive and active electrical and electronic components.

The final target is to define an architecture for the HESS that would ensure the following:

- **Scalable** and **modular** power system for different ESS integration.
- Optimized trade-off among efficiency, cost, and reliability.

Work performed by IREC with the collaboration of CEA and the support from TOS and KEMI.



### Hybrid Electric Storage System



General scheme of the HESS



#### Power conversion system electrical ratings:

| Port          | dc nom.<br>voltage | dc max.<br>voltage | dc max.<br>current | Nominal<br>power | ac phase-to-<br>phase nom.<br>voltage | ac phase<br>nom.<br>current | ac<br>nom.<br>cos(φ) |
|---------------|--------------------|--------------------|--------------------|------------------|---------------------------------------|-----------------------------|----------------------|
| dc (LTO)      | 330 V              | 390 V              | 200 A              | 50 kW            | -                                     | -                           | -                    |
| dc<br>(AORFB) | 50 V               | 70 V               | 165 A              | 9 kW             | -                                     | -                           | -                    |
| ac            | -                  | -                  | -                  | 59 kVA           | 400 Vrms ±10 %                        | 85 A                        | 1                    |



### **Explored power system** architectures



H2020

#### Four conversion architectures are explored, with different degrees of parallelization.



# Power converter topologies



DC-DC modules: Dual-active-bridge converter (DAB) employing conventional phase shift modulation.



DC-AC modules: Three-phase inverter employing SPWM.

 $C_{dc} = V_{dc}$   $C_{dc} = V_{dc}$   $C_{dc} = S_{2} = D_{2} = S_{4} = D_{4} = S_{6} = D_{6}$ 



H2020 G.A. 963652

5

### Multiobjective Optimization Problem



For each architecture ( $x \in \{A, B, C, D\}$ ) a multiobjective optimization problem is defined.

**Objective function:** 

$$G_{x,w}(\mathbf{y}) = W_{\zeta w} \cdot \zeta'_{x,w}(\mathbf{y}) + W_{\sigma w} \cdot \sigma'_{x,w}(\mathbf{y})$$

$$\zeta'_{x,w}: \text{ Conversion losses (in p.u.).}$$
  
$$\sigma'_{x,w}: \text{ System capital and reliability cost (in p.u.).}$$

To explore the cost-losses trade-off, weights  $W_{\zeta w}$  and  $W_{\sigma w}$  are used. Three different weight sets (WS) are defined:

□ WS1: 
$$\{W_{\zeta_1}, W_{\sigma_1}\} = \{0.5, 0.5\}$$
. Losses priority = Cost priority.

- □ WS2:  $\{W_{\zeta 2}, W_{\sigma 2}\} = \{0.2 \ 0.8\}$ . Losses priority > Cost priority.
- □ WS3:  $\{W_{\zeta_3}, W_{\sigma_3}\} = \{0.8 \ 0.2\}$ . Losses priority < Cost priority.





6

### **ζ - Conversion Losses Objective**



To compute the system losses we employ multiple converter component losses models.

- Semiconductor conduction losses and switching losses.
  - Modelled with linear equations from the devices datasheet data, taking into account junction temperature.







### **ζ - Conversion Losses Objective**



- □ Magnetic elements: DAB inductor + transformer and inverter filter inductors.
  - Copper losses: dc resistance and ac resistance (skin + proximity effect) in the winding conductors. From simplified Maxwell's equations [1].

$$P_{\mathsf{dc}} = \rho \cdot \frac{n_j \cdot MLT}{npw_j \cdot A_{\mathsf{W},j}} \sum_{j=1}^k \cdot I_j^2 \qquad | \qquad P_{\mathsf{ac},j} = I_{1,j}^2 \cdot R_{\mathsf{dc},j} \cdot \varphi_j \cdot M_j \cdot \left[G_1(\varphi_j) + \frac{2}{3}(M_j^2 - 1)(G_1(\varphi_j) - 2G_2(\varphi_j))\right]$$

**Core losses**: Polynomial regressions from core material datasheets.

$$P_{Fe} = K_{Fe0} \cdot f_1^{\xi} \cdot \Delta B^{\beta} \cdot N_c \cdot A_c \cdot l_m$$

**Capacitor losses**: derived from ESR:  $P_{cap} = ESR \cdot I_c^2$  (ESR values obtained from the datasheets)





[1] R. W. Erickson and D. Maksimovic, *Fundamentals of Power Electronics*, 2nd ed. Norwell, MA, USA: Kluwer Academic Publishers, 2004.

8

### Thermal model



- □ We compute the component temperatures since:
  - **Semiconductor losses =**  $f(T_i)$ .
  - Limit component temperatures to the maximum specified by the manufacturer.
- □ Heat-dissipation thermal models:
  - Semiconductors: Power MOSFETs + body diode attached to heatsink (forced air cooling). Junction temperature  $(T_i)$  is computed.
  - **Magnetics**: Natural convection cooling. Uniform temperature is considered ( $T_{\text{magnetic},k}$ ).
  - **Capacitors**: Free-standing capacitor with forced air cooling. Capacitor core temperature is computed  $(T_{cap,k})$ .



- Semiconductors junction temperature  $T_{j,n} = T_c + R_{th,j-c,n} \cdot (P_{cond,n} + P_{sw,n})$
- Magnetic elements temeprature  $T_{\text{magnetic},k} = T_{\text{amb}} + \left(\frac{P_{\text{core},k} + P_{\text{copper},k}}{10 \cdot S_{\text{magnetic},k}}\right)^{0.833}$
- Capacitor core temperature  $T_{cap} = T_{amb,k} + (R_{th,cap,0}+R_{th,cap,1}(u_{wind})) \cdot P_{cap}$



9

### **σ - Converter Cost Objective**



The system cost is divided in two parts:

- **Capital cost**: Sum of the components acquisition cost. Obtained from cost models [2], [3], [4].
  - □ Semiconductor cost = *f*(Chip area + Package)
  - Magnetics cost = f(Core weight + Copper weight + Labor cost)
  - □ Capacitors cost = *f*(Voltage rating + Capacitance rating)
  - □ Heatsink cost = *f*(HS volume + fixed cost)
  - **G** Fan cost = f(Fan volume + fixed cost)
  - □ Auxiliary elements cost = *f*(#Gate drivers + #sensors)

| Semiconductor chip dred cost [€/mm-] |                 |                        |                       |
|--------------------------------------|-----------------|------------------------|-----------------------|
| Voltage<br>rating \<br>SC type       | Si PiN<br>Diode | Si<br>MOSFET           | SiC<br>MOSFET         |
| 1200 V                               | 4.46.10-2       | -                      | 72·10 <sup>-2</sup>   |
| 600 V                                | 2.46.10-2       | 4.48·10 <sup>-2</sup>  | 64.8·10 <sup>-2</sup> |
| 100 V                                | -               | 13.24·10 <sup>-2</sup> | -                     |

| Semiconductor package cost [€] |              |            |                                |  |
|--------------------------------|--------------|------------|--------------------------------|--|
| Package<br>type                | TO-<br>247-3 | SOT<br>227 | Module<br>(variable)           |  |
| Value                          | 0.55         | 8.10       | 0.52·A <sub>mod</sub> -<br>4.8 |  |

| Magnetic core cost [€/kg] |         |                |    |             |
|---------------------------|---------|----------------|----|-------------|
| Core<br>material          | Ferrite | Powder<br>Core | Am | orpho<br>us |
| Value                     | 7.5     | 10.2           | -  | 14.1        |
| Winding cost [€/kg]       |         |                |    |             |
| Conduct<br>or type        | Round   | Litz           |    | Foil        |
| Value                     | 10      | 10.2           |    | 20          |

[2] R. Burkart and J. W. Kolar, "Component cost models for multi-objective optimizations of switched-mode power converters," in 2013 IEEE Energy Conversion Congress and Exposition, Sep. 2013, pp. 2139–2146.

[3] R. M. Burkart and J. W. Kolar, "Comparative η-ρ-σ Pareto Optimization of Si and SiC Multi-Level Dual Active Bridge Topologies with Wide Input Voltage Range," IEEE Trans. Power Electron., pp. 1–1, 2016.

[4] R. M. Burkart and J. W. Kolar, "Comparative Life Cycle Cost Analysis of Si and SiC PV Converter Systems Based on Advanced η- ρ-σ Multiobjective Optimization Techniques," IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4344–4358, Jun. 2017.

### **σ - Converter Cost Objective**



- **Reliability cost** = Cost of reparation + Energy revenue lost
  - **Q** Reparation of failed power modules = f( Probability of modules failure + Reparation cost)
  - Revenue lost from partial/complete shutdown = f( Probability of modules failure + Power lost + Price of energy)
  - □ Computed for a 1-year period (demo-site testing period).

#### **Reliability model:**

- Based on Markov chains.
- □ Allows computing the probability of failure of a power module.
- □ Failure rate of the modules = *f*(Component temperatures & blocking voltages)
- □ Architectures A & B can continue operation if one dc-dc module per group fails → Partial shutdown.
- □ Architectures C & D must stop operation if any power module fails → Complete shutdown.



### **Optimization variables**



| npar,sw,DAB,bat,b              | L <sub>HS,DAB,bat,b</sub>             | type <sub>wire,L,DAB,b</sub>    |
|--------------------------------|---------------------------------------|---------------------------------|
| $n_{ m par,sw,DAB,grid,b}$     | L <sub>HS,DAB,grid,b</sub>            | $type_{\mathrm{wire,Tx,DAB,}b}$ |
| $n_{\mathrm{par,sw,inv},b}$    | $L_{\mathrm{HS,inv},b}$               | type <sub>wire,L,inv,b</sub>    |
| type <sub>sw,DAB,bat,LTO</sub> | $n_{ m par,cap,dclink,b}$             | model <sub>wire,L,DAB,b</sub>   |
| model <sub>sw,DAB,bat,b</sub>  | $n_{ m par,cap,bat,b}$                | model <sub>wire,Tx,DAB,b</sub>  |
| model <sub>sw,DAB,grid,b</sub> | model <sub>cap,bat,b</sub>            | model <sub>wire,L,inv,b</sub>   |
| model <sub>sw,inv,b</sub>      | model <sub>cap,dclink,b</sub>         | $n_{\mathrm{t,L,DAB},b}$        |
| V <sub>dc</sub>                | $n_{\rm core,L,DAB,b}$                | $n_{ m t,Tx,DAB,bat,b}$         |
| $f_{s,\mathrm{DAB},b}$         | n <sub>core,Tx,DAB,b</sub>            | $n_{\mathrm{L,inv},b}$          |
| $m_{f,b}$                      | n <sub>core,L,inv,b</sub>             | $npw_{\mathrm{L,DAB},b}$        |
| model <sub>HS,DAB,bat,b</sub>  | model <sub>core,L,DAB,b</sub>         | npw <sub>Tx,DAB,bat,b</sub>     |
| model <sub>HS,DAB,grid,b</sub> | <i>model</i> <sub>core,Tx,DAB,b</sub> | npw <sub>Tx,DAB,grid,b</sub>    |
| model <sub>HS,inv,b</sub>      | model <sub>core,L,inv,b</sub>         | npw <sub>L,inv,b</sub>          |

76 optimization variables

All variables are discrete



 $b \in \{LTO, AORF\}$ 

12

H2020

G.A. 963652

### **Design Space**

HYB

Enhanced Hybrid Storage Systems



| Opt. variable                                               | Design space                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| npar,sw,DAB,bat,b                                           | 3, 4                                                                                                                                                                                                                                                                                                                                                                                                                |
| n <sub>par,sw,DAB,grid,b</sub>                              | Up to 2                                                                                                                                                                                                                                                                                                                                                                                                             |
| $n_{\mathrm{par,sw,inv},b}$                                 | Up to 2                                                                                                                                                                                                                                                                                                                                                                                                             |
| <i>type</i> <sub>sw,DAB,bat,LTO</sub>                       | Discrete Si MOSFET, Discrete SiC MOSFET                                                                                                                                                                                                                                                                                                                                                                             |
| model <sub>sw,DAB,bat,b</sub>                               | <ul> <li>LTO battery:</li> <li>Si MOSFET: IRF100P218, IRF100P219, IPP023N10N5,<br/>IPP030N10N5, STF150N10F7, IPB120N10S4-03,<br/>SUP70090E, IPD122N10N3G, IPP126N10N3G</li> <li>SiC MOSFET: UF3SC065007K4S</li> <li>AORF battery:</li> <li>Si MOSFET: SiHG018N60E, SiHG026N60EF,<br/>IPZ60R017C7, IPW60R017C7, IPW60R018CFD7,<br/>IPW60R024CFD7, IPW60R024P7, IPZA60R024P7,<br/>IPW60R041P6, IPW60R060P7</li> </ul> |
| $model_{sw,DAB,grid,b}$                                     | SiC MOSFET modules: CAB006M12GM3, CAB008M12GM3                                                                                                                                                                                                                                                                                                                                                                      |
| model <sub>sw,inv,b</sub>                                   | SiC MOSFET modules: CAB006M12GM3, CAB008M12GM3, CCB032M12FM3                                                                                                                                                                                                                                                                                                                                                        |
| $V_{\rm dc}$                                                | 700 V, 750 V, 800 V                                                                                                                                                                                                                                                                                                                                                                                                 |
| f <sub>s,DAB,b</sub>                                        | 20 kHz, 24 kHz,, 92 kHz, 96 kHz, 100 kHz                                                                                                                                                                                                                                                                                                                                                                            |
| $m_{f,b}$                                                   | 201, 219, 237,, 687, 705, 723                                                                                                                                                                                                                                                                                                                                                                                       |
| model <sub>HS,DAB,bat,b</sub>                               | From Advanced Thermal Solutions extrusion heat sinks                                                                                                                                                                                                                                                                                                                                                                |
| model <sub>HS,DAB,grid,b</sub><br>model <sub>HS,inv,b</sub> | - ATS-EXL6, ATS-EXL59, ATS-EXL64, ATS-EXL66, ATS-<br>EXL67, ATS-EXL75                                                                                                                                                                                                                                                                                                                                               |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                     |







### **Design Space**



| Opt. Variable                       | Design space                                                                                                                                                              |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| model <sub>cap,bat,b</sub>          | From Cornell Dubilier Electronics film capacitors:                                                                                                                        |
| model <sub>cap,dclink,b</sub>       | 947D152K901DLRSN, 947C102K901DCHS,<br>947D112K102DLRSN, 947C641K102DBHS, 947C321K122DAHS,<br>944U101K122AC, 944U660K102AA                                                 |
| n <sub>core,L,DAB,b</sub>           | 1 to 5                                                                                                                                                                    |
| $n_{ m core,Tx,DAB,b}$              | 1 to 5                                                                                                                                                                    |
| n <sub>core,L,inv,b</sub>           | 1 to 5                                                                                                                                                                    |
| model <sub>core,L,DAB,b</sub>       | From Magnetics cores catalogue:<br>0077169A7, 0077101A7, 0077336A7, 0059188A2, 0059909A2                                                                                  |
| model <sub>core,Tx,DAB,b</sub>      | From Magnetics cores catalogue:<br>00K114LE014, 0077164A7, 0077169A7, 0077101A7,<br>0077614A7,0077336A7,0077869A7,0077740A7,0077778A7                                     |
| model <sub>core,L,inv,b</sub>       | From Magnetics and TDK Electronics cores catalogue:<br>E32/16/11 (Ferrite), 00K3112U090, 00K114LE014, 0077164A7,<br>0077169A7, 0077101A7, 0077614A7, 0077336A7, 0077869A7 |
| <i>type</i> <sub>wire,L,DAB,b</sub> | Round, Foil, Litz                                                                                                                                                         |
| <i>type</i> wire,Tx,DAB, <i>b</i>   | Round, Foil, Litz                                                                                                                                                         |
| type <sub>wire,L,inv,b</sub>        | Round, Foil, Litz                                                                                                                                                         |
| model <sub>wire,L,DAB,b</sub>       | - Round wires: 2 AWG to 30 AWG                                                                                                                                            |
| model <sub>wire,Tx,DAB,b</sub>      | - Litz wires: from Ø0.04mm strand and 45 conductors per                                                                                                                   |
| model <sub>wire,L,inv,b</sub>       | litz, to ø0.28mm strand and 1350 conductors per litz                                                                                                                      |
| n <sub>t,L,DAB,b</sub>              | Up to 25 turns                                                                                                                                                            |
| $n_{ m t,Tx,DAB,bat,b}$             | Up to 18 turns                                                                                                                                                            |
| $n_{\mathrm{L,inv},b}$              | Up to 30 turns                                                                                                                                                            |











Enhanced Hybrid Storage Systems

### Constraints



□ Semiconductors max. temperature < 120 °C

□ Magnetics max. temperature < 100 °C

 $\Box$  Magnetics max. flux density <  $B_{sat}$  value from datasheet.

 $\Box$  Grid current THD < 10 %

□ dc-link voltage ripple < 10 %

□ ...other constraints related to the converters modulation.

70

- 60 - 55 - 50







### Optimization Problem Solving



$$\min_{\mathbf{y}} G_{\boldsymbol{\chi},\boldsymbol{w}}(\mathbf{y}) = W_{\boldsymbol{\zeta}\boldsymbol{w}} \cdot \boldsymbol{\zeta}'_{\boldsymbol{\chi},\boldsymbol{w}}(\mathbf{y}) + W_{\boldsymbol{\sigma}\boldsymbol{w}} \cdot \boldsymbol{\sigma}'_{\boldsymbol{\chi},\boldsymbol{w}}(\mathbf{y})$$

subject to constraints:

$$y_i \in \mathbb{Z}, \quad i = 1, \dots, 76$$
  
 $l_{\mathbf{b},i} \le y_i \le u_{\mathbf{b},i}, \quad l_{\mathbf{b},i}, u_{\mathbf{b},i} \in \mathbb{Z}.$ 

Solved with **MATLAB** *Surrogate* optimization algorithm.

Executed 6x times per architecture (x4) and weight set (x3) = 76 Executions.





### **Optimization results**





### **Optimization results**



#### □ WS1 Arch. D design is selected for its competitive cost-losses trade-off.



### Conclusion



We have developed an **Electronic Design Automation tool** with comprehensive and **multiphysics modelling** to:

- Obtain a set of power converter designs with optimum performance offering a wide range of cost-losses trade-off.
- □ The converter design are defined to the component level → Ready-to-go for converter implementation.

In HYBRIS context: Architectures with lower degree of parallelization offer the performance:

However, if reliability cost is accounted for a longer period, these Architectures may not become cost competitive.



19

### THANK YOU FOR YOUR ATTENTION



<sup>-</sup>his project has received funding rom the H2020 programme under Grant Agreement No. 963652

