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Framework

 HYBRIS WP3 Task 3.3: Optimal electrical architecture of each BESS 
and the HESS (M9-M17)

This task aims at achieving the optimal electrical and conversion 
architecture for hybrid electric storage systems (HESS). 

An optimization problem is defined with a search space consisting of 
commercial passive and active electrical and electronic components.

The final target is to define an architecture for the HESS that would 
ensure the following:

 Scalable and modular power system for different ESS integration.

 Optimized trade-off among efficiency, cost, and reliability.

Work performed by IREC with the collaboration of CEA and the support 
from TOS and KEMI.
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Hybrid Electric Storage 
System
General scheme of the HESS
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Power conversion system electrical ratings:
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Explored power system 
architectures
 Four conversion architectures are explored, with different 

degrees of parallelization.
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Parallelization

+ -
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Power converter 
topologies
 DC-DC modules: Dual-active-bridge converter (DAB) 

employing conventional phase shift modulation.
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 DC-AC modules: Three-phase inverter employing SPWM.
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For each architecture (x  {A, B, C, D}) a multiobjective optimization problem is 
defined.
Objective function:

 : Conversion losses (in p.u.).

 : System capital and reliability cost (in p.u.).

To explore the cost-losses trade-off, weights ఍௪ and ఙ௪ are used. Three different 
weight sets (WS) are defined:

 WS1: ఍ଵ ஢ଵ . Losses priority = Cost priority.

 WS2: ఍ଶ ஢ଶ . Losses priority > Cost priority.

 WS3: ఍ଷ ஢ଷ . Losses priority < Cost priority.

Multiobjective 
Optimization Problem
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- Conversion Losses 
Objective
To compute the system losses we employ multiple converter 
component losses models.

 Semiconductor conduction losses and switching losses.
 Modelled with linear equations from the devices datasheet data, 

taking into account junction temperature.
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- Conversion Losses 
Objective
 Magnetic elements: DAB inductor + transformer and inverter filter inductors.

 Copper losses: dc resistance and ac resistance (skin + proximity effect) in the winding 
conductors. From simplified Maxwell’s equations [1].

𝑃dc = 𝜌 ·
௡ೕ·ெ௅்

௡௣௪ೕ·஺w,ೕ
∑ · 𝐼௝

ଶ௞
௝ୀଵ | 𝑃ac,௝ = 𝐼ଵ,௝

ଶ · 𝑅dc,௝ · 𝜑௝ · 𝑀௝ · 𝐺ଵ 𝜑௝ +
ଶ

ଷ
𝑀௝

ଶ − 1 𝐺ଵ 𝜑௝ − 2𝐺ଶ 𝜑௝

 Core losses: Polynomial regressions from core material datasheets.

𝑃ி௘ = 𝐾ி௘଴ · 𝑓ଵ
క

· 𝛥𝐵ఉ · 𝑁௖ · 𝐴௖ · 𝑙௠

 Capacitor losses: derived from ESR: 𝑃cap = 𝐸𝑆𝑅 · 𝐼௖
ଶ (ESR values obtained from the datasheets)
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[1] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA, 
USA: Kluwer Academic Publishers, 2004.



H2020 
G.A. 963652

Thermal model
 We compute the component temperatures since:

 Semiconductor losses = f(Tj).

 Limit component temperatures to the maximum specified by the manufacturer.

 Heat-dissipation thermal models:
 Semiconductors: Power MOSFETs + body diode attached to heatsink (forced air cooling). Junction 

temperature (Tj) is computed.

 Magnetics: Natural convection cooling. Uniform temperature is considered (Tmagnetic,k).

 Capacitors: Free-standing capacitor with forced air cooling. Capacitor core temperature is 
computed (Tcap,k).
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 Semiconductors junction temperature
𝑇௝,௡ = 𝑇௖ + 𝑅௧௛,j−c,௡ · 𝑃cond,௡ + 𝑃sw,௡

 Magnetic elements temeprature

𝑇magnetic,௞ = 𝑇amb +
𝑃core,௞ + 𝑃copper,௞

10 · 𝑆magnetic,௞

଴.଼ଷଷ

 Capacitor core temperature
𝑇cap = 𝑇ୟ୫ୠ,௞ + 𝑅௧௛,cap,0+𝑅௧௛,cap,1(𝑢wind) ·𝑃cap
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 - Converter Cost 
Objective
The system cost is divided in two parts:
 Capital cost: Sum of the components acquisition cost. Obtained from cost models [2], [3], [4].

 Semiconductor cost = f(Chip area + Package)
 Magnetics cost = f(Core weight + Copper weight + Labor cost)
 Capacitors cost  = f(Voltage rating + Capacitance rating)
 Heatsink cost = f(HS volume + fixed cost)
 Fan cost = f(Fan volume + fixed cost)
 Auxiliary elements cost = f(#Gate drivers + #sensors)
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[2] R. Burkart and J. W. Kolar, “Component cost models for multi-objective optimizations of switched-mode power converters,” in 2013 IEEE Energy Conversion Congress
and Exposition, Sep. 2013, pp. 2139–2146.
[3] R. M. Burkart and J. W. Kolar, “Comparative η-ρ-σ Pareto Optimization of Si and SiC Multi-Level Dual Active Bridge Topologies with Wide Input Voltage Range,” IEEE
Trans. Power Electron., pp. 1–1, 2016.
[4] R. M. Burkart and J. W. Kolar, “Comparative Life Cycle Cost Analysis of Si and SiC PV Converter Systems Based on Advanced η- ρ-σ Multiobjective Optimization
Techniques,” IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4344–4358, Jun. 2017.

Voltage 
rating \
SC type

Si PiN 
Diode

Si 
MOSFET

SiC
MOSFET

1200 V 4.46·10-2 - 72·10-2

600 V 2.46·10-2 4.48·10-2 64.8·10-2

100 V - 13.24·10-2  -

Semiconductor chip area cost [€/mm2]

Package 
type

TO-
247-3

SOT 
227

Module 
(variable)

Value 0.55 8.10
0.52·Amod -

4.8

Semiconductor package cost [€]
Core 

material
Ferrite

Powder
Core

Amorpho
us

Value 7.5 10.2 14.1

Magnetic core cost [€/kg]

Conduct
or type

Round Litz Foil

Value 10 10.2 20

Winding cost [€/kg]
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 - Converter Cost 
Objective

 Reliability cost = Cost of reparation + Energy revenue lost

 Reparation of failed power modules =  f( Probability of modules failure + Reparation cost)
 Revenue lost from partial/complete shutdown = f( Probability of modules failure + Power lost + 

Price of energy)
 Computed for a 1-year period (demo-site testing period).

 Reliability model:

 Based on Markov chains.
 Allows computing the probability of failure of a power module.
 Failure rate of the modules = f(Component temperatures & blocking voltages)
 Architectures A & B can continue operation if one dc-dc module per group fails  Partial shutdown.
 Architectures C & D must stop operation if any power module fails  Complete shutdown.
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Optimization variables
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par,ୱ୵,ୈ୅୆,ୠୟ୲,௕ ୌୗ,ୈ୅୆,ୠୟ୲,௕ ୵୧୰ୣ,୐,ୈ୅୆,௕

୮ୟ୰,ୱ୵,ୈ୅୆,୥୰୧ୢ,௕ ୌୗ,ୈ୅୆,୥୰୧ୢ,௕ ୵୧୰ୣ,୘୶,ୈ୅୆,௕

୮ୟ୰,ୱ୵,୧୬୴,௕ ୌୗ,୧୬୴,௕ ୵୧୰ୣ,୐,୧୬୴,௕

ୱ୵,ୈ୅୆,ୠୟ୲,୐୘୓ ୮ୟ୰,ୡୟ୮,ୢୡ୪୧୬୩,௕ ୵୧୰ୣ,୐,ୈ୅୆,௕

ୱ୵,ୈ୅୆,ୠୟ୲,௕ ୮ୟ୰,ୡୟ୮,ୠୟ୲,௕ ୵୧୰ୣ,୘୶,ୈ୅୆,௕

ୱ୵,ୈ୅୆,୥୰୧ୢ,௕ ୡୟ୮,ୠୟ୲,௕ ୵୧୰ୣ,୐,୧୬୴,௕

ୱ୵,୧୬୴,௕ ୡୟ୮,ୢୡ୪୧୬୩,௕ ୲,୐,ୈ୅୆,௕

ୢୡ ୡ୭୰ୣ,୐,ୈ୅୆,௕ ୲,୘୶,ୈ୅୆,ୠୟ୲,௕

ୱ,ୈ୅୆,௕ ୡ୭୰ୣ,୘୶,ୈ୅୆,௕ ୐,୧୬୴,௕

௙,௕ ୡ୭୰ୣ,୐,୧୬୴,௕ ୐,ୈ୅୆,௕

ୌୗ,ୈ୅୆,ୠୟ୲,௕ ୡ୭୰ୣ,୐,ୈ୅୆,௕ ୘୶,ୈ୅୆,ୠୟ୲,௕

ୌୗ,ୈ୅୆,୥୰୧ୢ,௕ ୡ୭୰ୣ,୘୶,ୈ୅୆,௕ ୘୶,ୈ୅୆,୥୰୧ୢ,௕

ୌୗ,୧୬୴,௕ ୡ୭୰ୣ,୐,୧୬୴,௕ ୐,୧୬୴,௕

𝑏 ∈ LTO,  AORF

 76 optimization 
variables

 All variables are 
discrete
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Design Space
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Opt. variable Design space

𝑛par,ୱ୵,ୈ୅୆,ୠୟ୲,௕ 3, 4

𝑛୮ୟ୰,ୱ୵,ୈ୅୆,୥୰୧ୢ,௕ Up to 2
𝑛୮ୟ୰,ୱ୵,୧୬୴,௕ Up to 2

𝑡𝑦𝑝𝑒ୱ୵,ୈ୅୆,ୠୟ୲,୐୘୓ Discrete Si MOSFET, Discrete SiC MOSFET

𝑚𝑜𝑑𝑒𝑙ୱ୵,ୈ୅୆,ୠୟ୲,௕

LTO battery:
- Si MOSFET: IRF100P218, IRF100P219, IPP023N10N5, 

IPP030N10N5, STF150N10F7, IPB120N10S4-03, 
SUP70090E, IPD122N10N3G, IPP126N10N3G

- SiC MOSFET: UF3SC065007K4S
AORF battery:
- Si MOSFET: SiHG018N60E, SiHG026N60EF, 

IPZ60R017C7, IPW60R017C7, IPW60R018CFD7, 
IPW60R024CFD7, IPW60R024P7, IPZA60R024P7, 
IPW60R041P6, IPW60R060P7

𝑚𝑜𝑑𝑒𝑙ୱ୵,ୈ୅୆,୥୰୧ୢ,௕ SiC MOSFET modules: CAB006M12GM3, CAB008M12GM3

𝑚𝑜𝑑𝑒𝑙ୱ୵,୧୬୴,௕
SiC MOSFET modules: CAB006M12GM3, CAB008M12GM3, 
CCB032M12FM3

𝑉 ୡ 700 V, 750 V, 800 V
𝑓ୱ,ୈ୅୆,௕ 20 kHz, 24 kHz, …, 92 kHz, 96 kHz, 100 kHz

𝑚௙,௕ 201, 219, 237, …, 687, 705, 723

𝑚𝑜𝑑𝑒𝑙ୌୗ,ୈ୅୆,ୠୟ୲,௕ From Advanced Thermal Solutions extrusion heat sinks 
catalogue:
- ATS-EXL6, ATS-EXL59, ATS-EXL64, ATS-EXL66, ATS-

EXL67, ATS-EXL75

𝑚𝑜𝑑𝑒𝑙ୌୗ,ୈ୅୆,୥୰୧ୢ,௕

𝑚𝑜𝑑𝑒𝑙ୌୗ,୧୬୴,௕
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Design Space
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Opt. Variable Design space

𝑚𝑜𝑑𝑒𝑙ୡୟ୮,ୠୟ୲,௕ From Cornell Dubilier Electronics film capacitors:
947D152K901DLRSN, 947C102K901DCHS, 
947D112K102DLRSN, 947C641K102DBHS, 947C321K122DAHS, 
944U101K122AC, 944U660K102AA

𝑚𝑜𝑑𝑒𝑙ୡୟ୮,ୢୡ୪୧୬୩,௕

𝑛ୡ୭୰ୣ,୐,ୈ୅୆,௕ 1 to 5

𝑛ୡ୭୰ୣ,୘୶,ୈ୅୆,௕ 1 to 5

𝑛ୡ୭୰ୣ,୐,୧୬୴,௕ 1 to 5

𝑚𝑜𝑑𝑒𝑙ୡ୭୰ୣ,୐,ୈ୅୆,௕
From Magnetics cores catalogue:
0077169A7, 0077101A7, 0077336A7, 0059188A2, 0059909A2

𝑚𝑜𝑑𝑒𝑙ୡ୭୰ୣ,୘୶,ୈ୅୆,௕

From Magnetics cores catalogue:
00K114LE014, 0077164A7, 0077169A7, 0077101A7,
0077614A7, 0077336A7, 0077869A7, 0077740A7, 0077778A7

𝑚𝑜𝑑𝑒𝑙ୡ୭୰ୣ,୐,୧୬୴,௕

From Magnetics and TDK Electronics cores catalogue:
E32/16/11 (Ferrite), 00K3112U090, 00K114LE014, 0077164A7,
0077169A7, 0077101A7, 0077614A7, 0077336A7, 0077869A7

𝑡𝑦𝑝𝑒୵୧୰ୣ,୐,ୈ୅୆,௕ Round, Foil, Litz

𝑡𝑦𝑝𝑒୵୧୰ୣ,୘୶,ୈ୅୆,௕ Round, Foil, Litz

𝑡𝑦𝑝𝑒୵୧୰ୣ,୐,୧୬୴,௕ Round, Foil, Litz

𝑚𝑜𝑑𝑒𝑙୵୧୰ୣ,୐,ୈ୅୆,௕ - Round wires: 2 AWG to 30 AWG
- Litz wires: from ⌀0.04mm strand and 45 conductors per

litz, to ⌀0.28mm strand and 1350 conductors per litz
𝑚𝑜𝑑𝑒𝑙୵୧୰ୣ,୘୶,ୈ୅୆,௕

𝑚𝑜𝑑𝑒𝑙୵୧୰ୣ,୐,୧୬୴,௕

𝑛୲,୐,ୈ୅୆,௕ Up to 25 turns

𝑛୲,୘୶,ୈ୅୆,ୠୟ୲,௕ Up to 18 turns

𝑛୐,୧୬୴,௕ Up to 30 turns
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Constraints

 Semiconductors max. temperature < 120 ºC

Magnetics max. temperature  < 100 ºC

Magnetics max. flux density < Bsat value from datasheet.

 Grid current THD  < 10 %

 dc-link voltage ripple < 10 %

…other constraints related to the converters modulation.

15
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Optimization Problem 
Solving

𝐲
௫,௪ ஖୵ ୶,୵

ᇱ
஢୵ ୶,୵

ᇱ

subject to constraints:

௜

b,௜ ௜ b,௜ b,௜ b,௜
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Solved with MATLAB Surrogate 
optimization algorithm.

Executed 6x times per architecture (x4) 
and weight set (x3) = 76 Executions. 
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Optimization results
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 Clear cost-losses trade-off.
 Lesser parallalization  Better results
 Architecture D stands as the optimum architecture
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Optimization results
 WS1 Arch. D design is selected for its competitive cost-losses trade-off.

18

Share of capital cost
Share of 

reliability cost
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Conclusion
We have developed an Electronic Design Automation tool with 
comprehensive and multiphysics modelling to:

 Obtain a set of power converter designs with optimum 
performance offering a wide range of cost-losses trade-off.

 The converter design are defined to the component level 
Ready-to-go for converter implementation.

In HYBRIS context: Architectures with lower degree of 
parallelization offer the performance:

 However, if reliability cost is accounted for a longer period, these 
Architectures may not become cost competitive.

19
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Optimization results
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Cost share of the 
optimum solutions

Architecture A Architecture B Architecture C Architecture D

WS1

WS2

WS3


