

# **Lithium Titanate Batteries**

Workshop on energy storage and its crucial role in the energy transition with focus on hybrid solutions

Presented by Fabio Muzio – Project Manager



□ 1st HYBRIS Workshop

□ Horcynus Orca Foundation, 23rd June 2022



This project has received funding rom the H2020 programme under Grant Agreement No. 963652

## **Overview & chemistries**

## **Li-Battery system**

LiB choice: Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (LTO)

- High cyclability (>20,000 cycles, at 3C & 25°C)
- High energy storage capacity
- **High** charge/discharge **power** (up to 80% SOC in 6min, 50% SOC in 10s)
- High round trip charge/discharge efficiency (up to >92%)
- Hinders dendrite formation
- Lower Co content in cathode (partially substituted by Ni & Mn)
- Very low combustion/burning risk even at C rates > 3C
- Long term maintenance free also under heavy duty cycles

## $\text{Li}_{4}\text{Ti}_{5}\text{O}_{12}$ + 3e<sup>-</sup> + 3Li<sup>+</sup> $\rightarrow$ $\text{Li}_{7}\text{Ti}_{5}\text{O}_{12}$



Rock-salt structure Li<sub>7</sub>Ti<sub>5</sub>O<sub>12</sub>



Benedikt Ziebarth, PHYSICAL REVIEW B 89, 174301 (2014)

Incorporation of Li in anode host material results in a phase transition which has "zero strain" intercalation or zero change in volume (0.2%). As a result, no mechanical defects are induced compared to silicon or graphite anodes.



#### T2.2: Assessment of high-power battery module based on LiB

#### Module and cell tests and characterization performed:

- Various charge/discharge cycles until max continuous current
- Hybrid Pulse Power Characterization test for SoC-Voc relation
- Peak shaving (power application)\*
- Power quality (power application)\*

#### Various charge/discharge cycles up to 3,5C 160A



The Li-battery works properly in the range of currents tested. No major potential and capacity loses are observed.



Galvanostatic voltage drop transients for different c-rates





#### T2.2: Assessment of high-power battery module based on LiB

#### Temperature measurements for different charge/discharge rates



| C-rate       | P (kW) | Ah<br>discharged | Wh<br>Discharged | Max temperature<br>(°C) |
|--------------|--------|------------------|------------------|-------------------------|
| 1C           | 1,2    | 46,816           | 1253,4           | 32                      |
| 2C           | 2,4    | 46,34            | 1221,8           | 38                      |
| 3C           | 3,6    | 46,28            | 1201,95          | 42                      |
| 160 A (3,5C) | 4,2    | 46,28            | 1191,22          | 44                      |

| C-rate | P (kW) | Ah charged* | Wh charged* | Max temperature (°C) |
|--------|--------|-------------|-------------|----------------------|
| C/2    | 0,6    | 46,09       | 1272,4      | 23                   |
| 1C     | 1,2    | 44,07       | 1225,9      | 29                   |
| 2C     | 2,4    | 43,11       | 1214,5      | 34                   |
| 3C     | 3,6    | 42,72       | 1218,8      | 38                   |

Fast charging implies a reduction of capacity (about 7% for 3C)

High rate discharge (above 3C) may require cooling system to enhance battery safety and life-time Not discharging completely the battery (being within the 50-90% SoC) extends battery lifetime



T2.2: Assessment of high-power battery module based on LiB

# **Thermal management evaluation**

# Thermal testing of the LTO cell



Enhanced Hybrid Storage Systems

—current —voltage

- Temperature measurement with K-type thermocouples and FLIR IR camera
- Procedure: the cell was fully charged at constant voltage until the current reached a value corresponding to a state of charge (SOC) 100%; then the current was maintained a 0A until the voltage reached the OCV value; finally, the cell was fully discharged at constant current until the voltage reached a value corresponding to 0%.



T2.2: Assessment of high-power battery module based on LiB

# **Thermal management evaluation**



#### **Results in a nutshell:**

- temperature difference among the different points of the surface of the cell is within 1 K, thus indicating a good uniformity; there is a clear effect of the Crate: at 1C, the max temperature reached by the cell does not exceed 30°C, for the charge at 4C a maximum temperature of 42°C is measured.
- the heating occurring during discharge is slightly more marked than during charge



T2.2: Assessment of high-power battery module based on LiB

# **Thermal management evaluation**



Definition of application and specifications

Ambient temperature

Enhanced Hybrid Storage Systems

Temperature [°C]

T2.2: Assessment of high-power battery module based on LiB

# **Thermal management evaluation**

# Numerical model for thermal management analysis



- For passive systems, the best conditions identified in terms of PCM thickness and melting temperature are 10 mm and 40°C, respectively
- For hybrid system the optimal parameters identified are: PCM melting temperature of 40°C, PCM thickness 10 mm, channel depth 2.5 mm, cooling water inlet temperature 30°C.



T2.2: Assessment of high-power battery module based on LiB

# **Thermal management evaluation**

**On-going experimental activity** 



- Bio-based PCM for passive • management evaluation (T melting: 37°C)
- Preliminary testing: continuous charge/discharge at 4C inside a climatic chamber (T: 25°C)

H2020

<u>G.A</u>. 963652



# THANK YOU FOR YOUR ATTENTION



<sup>-</sup>his project has received funding rom the H2020 programme under Grant Agreement No. 963652